Lattice Boltzmann models for nonequilibrium gas flows.

نویسندگان

  • Gui-Hua Tang
  • Yong-Hao Zhang
  • David R Emerson
چکیده

Due to its computational efficiency, the kinetic-based lattice Boltzmann method has recently been used to model nonequilibrium gas dynamics. With appropriate boundary conditions, lattice Boltzmann models have been able to capture both velocity slip and temperature jump at a solid surface. To enable these models to simulate flows in the transition regime, both high-order and modified lattice Boltzmann models have been proposed. In this paper, we demonstrate the advantages of the standard lattice Bhatnagar-Gross-Krook model in predicting high-order rarefaction phenomenon. In addition, we show that current high-order lattice Boltzmann models are not yet able to capture the nonlinear constitutive relation for the stress in the Knudsen layer, despite the improved predictions of the wall slip-velocity, especially for Poiseuille flow. By considering how the wall affects the gas mean free path, we present a simplified high-order lattice Boltzmann model that can predict flow in the transition regime and is also able to capture the essential characteristics of the Knudsen layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter

Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...

متن کامل

Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows.

Recently, kinetic theory-based lattice Boltzmann (LB) models have been developed to model nonequilibrium gas flows. Depending on the order of quadratures, a hierarchy of LB models can be constructed which we have previously shown to capture rarefaction effects in the standing-shear wave problems. Here, we further examine the capability of high-order LB models in modeling nonequilibrium flows co...

متن کامل

کاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال

In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...

متن کامل

Multiscale lattice Boltzmann approach to modeling gas flows.

For multiscale gas flows, the kinetic-continuum hybrid method is usually used to balance the computational accuracy and efficiency. However, the kinetic-continuum coupling is not straightforward since the coupled methods are based on different theoretical frameworks. In particular, it is not easy to recover the nonequilibrium information required by the kinetic method, which is lost by the cont...

متن کامل

High-order lattice Boltzmann models for gas flow for a wide range of Knudsen numbers.

The lattice Boltzmann methods (LBMs) have successfully been applied to microscale flows in the hydrodynamic regime, such as flows of liquids in porous media. However, the LBM in its standard formulation does not produce correct results beyond the hydrodynamic regime, i.e., for slip and transitional ones. Following the work of Shan and He [Phys. Rev. Lett. 80, 65 (1998)], we propose to extend th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 77 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008